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Outline 

• Overview: the PISCEES project, the First Order 
(FO) Stokes model for ice sheets and the 
Albany/FELIX finite element solver. 

 

• Definitions: Strong vs. Weak Scalability. 
 

• Algebraic multi-grid (AMG) preconditioner 
based on aggressive semi-coarsening. 

 

• Importance of node ordering and mesh 
partitioning. 

 

• Strong scaling study for a fine-resolution 
Greenland Ice Sheet (GIS) problem. 

 

• Weak scaling study for a moderate-resolution 
Antarctic Ice Sheet (AIS) problem. 

 

• Summary and ongoing work.  
 

• Questions? 
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The PISCEES Project and the 
Albany/FELIX Solver 

“PISCEES” = Predicting Ice Sheet Climate & Evolution at Extreme Scales 
5 Year Project funded by SciDAC, which began in June 2012 

Sandia’s Role in the PISCEES Project: to develop and support a robust and 
scalable land ice solver based on the “First-Order” (FO) Stokes physics 
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The First-Order Stokes Model 
for Ice Sheets & Glaciers 

 

•  Ice sheet dynamics are given by the “First-Order” Stokes PDEs: approximation* to 
viscous incompressible quasi-static Stokes flow with power-law viscosity. 

 
−𝛻 ∙ (2𝜇𝝐 1) = −𝜌𝑔

𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇𝝐 𝟐) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

    ,    in Ω 

Albany/FELIX 

• Relevant boundary conditions:  
 
 

Ice sheet 

 

•  Viscosity 𝜇 is nonlinear function given by “Glen’s law”:  
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*Assumption: aspect ratio 𝛿 is small and normals to upper/lower surfaces are almost vertical. 
 

(𝑛 = 3) 
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*Assumption: aspect ratio 𝛿 is small and normals to upper/lower surfaces are almost vertical. 
 

(𝑛 = 3) 
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Algorithmic Choices for Albany/FELIX: 
Discretization & Meshes 

• Discretization: unstructured grid finite element method (FEM) 
 

• Can handle readily complex geometries. 
• Natural treatment of stress boundary                                

conditions. 
• Enables regional refinement/unstructured                        

meshes. 
• Wealth of software and algorithms. 

 
• Meshes: can use any mesh but interested specifically in  
 

• Structured hexahedral meshes (compatible with CISM). 
• Structured tetrahedral meshes (compatible with MPAS)  
• Unstructured Delaunay triangle meshes with regional 

refinement based on gradient of surface velocity. 
• All meshes are extruded (structured) in vertical direction as        

tetrahedra or hexahedra. 
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Algorithmic Choices for Albany/FELIX: 
Nonlinear & Linear Solver 

• Nonlinear solver: full Newton with analytic (automatic differentiation) 
derivatives and homotopy continuation 

 

• Most robust and efficient for steady-state solves. 
• Jacobian available for preconditioners and matrix-vector products. 
• Analytic sensitivity analysis.  
• Analytic gradients for inversion.  
 

• Linear solver: preconditioned iterative method 
 

• Solvers: Conjugate Gradient (CG) or GMRES 
• Preconditioners: ILU or algebraic multi-grid (AMG) 

 

Nonlinear Solve 
for 𝒇(𝒙)  =  0 

(Newton) 

Preconditioned  
Iterative Linear Solve  

(CG or GMRES): 
Solve 𝑱𝒙 = 𝒓 

Automatic 
Differentiation 

Jacobian: 

𝑱 =  
𝜕𝒇

𝜕𝒙
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Land Ice Physics Set 
(Albany/FELIX code)  

Other Albany 
Physics Sets 

The Albany/FELIX First Order Stokes 
solver is implemented in a Sandia 
(open-source*) parallel C++ finite 

element code called… • Discretizations/meshes 
• Solver libraries  
• Preconditioners 
• Automatic differentiation 
• Many others! 

• Parameter estimation 
• Uncertainty quantification 
• Optimization 
• Bayesian inference 

• Configure/build/test/documentation 

The Albany/FELIX Solver:  
Implementation in Albany using Trilinos  

 

Use of Trilinos components has enabled the rapid development of the 
Albany/FELIX First Order Stokes dycore! 

Started 

by A. 

Salinger 

“Agile Components” 

*Available on github: https://github.com/gahansen/Albany 
(Salinger et al., 2015). 

https://github.com/gahansen/Albany
https://github.com/gahansen/Albany
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Definitions: Strong vs. Weak 
Scaling 

• Strong scaling: how the solution time varies with 
the number of cores for a fixed total problem 
size. 
 Fix problem size, increase # cores. 
• Ideal: linear speed-up with increase in # 

cores. 
 

• Weak scaling: how the solution time varies with 
the number of cores for a fixed problem size per 
core. 
 Increase problem size and # cores s.t. # 

dofs/core is approximately constant. 
• Ideal: solution time remains constant as 

problem size and # cores increases. 

Scalability (a.k.a. Scaling Efficiency) = measure of the efficiency 
of a code when increasing numbers of parallel processing 

elements (CPUs, cores, processes, threads, etc.).  
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Scalability via Algebraic Multi-Grid  
Preconditioning with Semi-Coarsening 

Bad aspect ratios ruin classical AMG convergence rates! 
• relatively small horizontal coupling terms, hard to smooth horizontal errors 
  Solvers (AMG and ILU) must take aspect ratios into account 

We developed a new AMG solver based on aggressive semi-coarsening (figure below) 
• Algebraic Structured MG (  matrix depend. MG) used with vertical line relaxation on 
     finest levels + traditional AMG on 1 layer problem 

 

… 

Algebraic 
Structured MG 

Algebraic 
Structured MG 

Unstructured 
AMG  

Unstructured 
AMG  
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We developed a new AMG solver based on aggressive semi-coarsening (figure below) 
• Algebraic Structured MG (  matrix depend. MG) used with vertical line relaxation on 
     finest levels + traditional AMG on 1 layer problem 

 

… 

Algebraic 
Structured MG 

Algebraic 
Structured MG 

Unstructured 
AMG  

Unstructured 
AMG  

New AMG preconditioner is 
available in ML package of Trilinos! 

See (Tuminaro, 2014), (Tezaur et al., 
2015), (Tuminaro et al., 2015). 
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Scalability via Algebraic Multi-Grid  
Preconditioning with Semi-Coarsening 

Bad aspect ratios ruin classical AMG convergence rates! 
• relatively small horizontal coupling terms, hard to smooth horizontal errors 
  Solvers (AMG and ILU) must take aspect ratios into account 

We developed a new AMG solver based on aggressive semi-coarsening (figure below) 
• Algebraic Structured MG (  matrix depend. MG) used with vertical line relaxation on 
     finest levels + traditional AMG on 1 layer problem 

 

… 

Algebraic 
Structured MG 

Algebraic 
Structured MG 

Unstructured 
AMG  

Unstructured 
AMG  

New AMG preconditioner is 
available in ML package of Trilinos! 

Scaling studies (next slides):  
New AMG preconditioner vs. ILU 

See (Tuminaro, 2014), (Tezaur et al., 
2015), (Tuminaro et al., 2015). 
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Importance of Node Ordering & 
Mesh Partitioning 

Our studies revealed that node ordering and mesh 
partitioning matters for linear solver performance, 

especially for the ILU preconditioner! 

• It is essential that incomplete factorization accurately 
captures vertical coupling, which is dominant due to 
anisotropic mesh. 
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• Ensuring all points along a vertically extruded grid 
line reside within a single processor (“2D mesh 
partitioning”; top right). 

 

6 
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Importance of Node Ordering & 
Mesh Partitioning 

Our studies revealed that node ordering and mesh 
partitioning matters for linear solver performance, 

especially for the ILU preconditioner! 

• It is essential that incomplete factorization accurately 
captures vertical coupling, which is dominant due to 
anisotropic mesh. 

 
• This is accomplished by:  
 

• Ensuring all points along a vertically extruded grid 
line reside within a single processor (“2D mesh 
partitioning”; top right). 

 

• Ordering the equations such that grid layer 𝑘’s 
nodes are ordered before all dofs associated with 
grid layer 𝑘 + 1 (“row-wise ordering”; bottom 
right). 0 

6 
⋯ ⋯ ⋯ 1 

28 29 ⋯ ⋯ ⋯ 34 
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Strong Scaling Study for a Fine-
Resolution GIS Problem 

• Uniform quadrilateral mesh with 1 km horizontal resolution, 
extruded vertically using 40 layers (69.8M hex elements, 143M 
dofs).  
 

• Run on 1024→16,384 cores of Hopper (16-fold increase). 
 

• Realistic basal friction coefficient and bed topographies 
calculated by solving a deterministic inversion problem that 
minimized modeled and observed surface velocity mismatch 
(Perego et al., 2014; top right). 
 

• Realistic 3D temperature field calculated in CISM (Shannon et 
al.)  
 

• Preconditioner: ILU vs. new AMG (with aggressive semi-
coarsening).  
 

• Iterative linear solver: Conjugate Gradient (CG). 
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Strong Scaling Study for a Fine-Resolution 
GIS Problem (cont’d) 

ILU AMG 

1024 
cores  

16,384 
cores  

1024 
cores  

16,384 
cores  

1024 core run:  
 

• AMG preconditioner solves are much faster than ILU (e.g., 194.3 sec 
for AMG vs. 607.9 sec for ILU). 
• Primarily due to better convergence rate obtained with AMG vs. 

ILU. 
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Strong Scaling Study for a Fine-Resolution 
GIS Problem (cont’d) 

16,384 core run:  
 

• ILU preconditioner fairly effective relative to AMG when # dofs/core is modest (e.g., 10K 
dofs/core). 
• ILU requires slightly more iterations/linear solve but cost/iteration is higher for AMG. 
• AMG solver is very inefficient when # dofs/core is small; communication costs in 

coarse level processing dominate.  

ILU AMG 

1024 
cores  

16,384 
cores  

1024 
cores  

16,384 
cores  
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Strong Scaling Study for a Fine-Resolution 
GIS Problem (cont’d) 

Summary:  
 

• ILU preconditioner scales better in the strong sense than AMG. 
• However, ILU-preconditioned solve is slower for lower #s of cores (more 

dofs/core). 

ILU AMG 

1024 
cores  

16,384 
cores  

1024 
cores  

16,384 
cores  
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Weak Scaling Study for a 
Moderate-Resolution AIS Problem 

• 3 hexahedral meshes considered:  
• 8 km horizontal resolution + 5 vertical layers (2.52M 

dofs) → 16 cores of Hopper. 
• 4 km horizontal resolution + 10 vertical layers (18.5M 

dofs) → 128 cores of Hopper.  
• 2 km horizontal resolution + 20 vertical layers (141.5M 

dofs) → 1024 cores of Hopper. 
 

• Ice sheet geometry based on BEDMAP2 (Fretwell et al., 2013) 
and 3D temperature field from (Pattyn, 2010)  

 

• Realistic regularized* basal friction coefficient and bed 
topographies calculated by solving a deterministic inversion 
problem that minimizes modeled and observed surface 
velocity mismatch on finest (2km) resolution geometry 
(Perego et al., 2014; top right). 

 

• Preconditioner: ILU vs. new AMG (with aggressive semi-
coarsening).  

 

• Iterative linear solver: GMRES. 
 

 

*Setting 𝛽 = 𝛿 > 0, with 𝛿 ≪ 1 under 
ice shelves. 
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Basal boundary  Γ𝛽 
) 

Lateral boundary 
Γ𝑙 

Ice sheet 

Surface boundary Γ𝑠 Albany/FELIX Glimmer/CISM 

Weak Scaling Study for a Moderate-
Resolution AIS Problem (cont’d) 

(vertical > horizontal coupling)  
+  

Neumann BCs  
=  

nearly singular submatrix associated with vertical lines 

Antarctica is fundamentally different than Greenland:  
AIS contains large ice shelves (floating extensions of land ice).  

• Along ice shelf front: open-ocean BC (Neumann). 
• Along ice shelf base: zero traction BC (Neumann). 
 
 

⇒ For vertical grid lines that lie within ice shelves, top and 
bottom BCs resemble Neumann BCs so sub-matrix 
associated with one of these lines is almost* singular.  

*Completely singular in the presence 
of islands and some ice tongues. 
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Basal boundary  Γ𝛽 
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Lateral boundary 
Γ𝑙 

Ice sheet 

Surface boundary Γ𝑠 Albany/FELIX Glimmer/CISM 

Weak Scaling Study for a Moderate-
Resolution AIS Problem (cont’d) 

(vertical > horizontal coupling)  
+  

Neumann BCs  
=  

nearly singular submatrix associated with vertical lines 

Antarctica is fundamentally different than Greenland:  
AIS contains large ice shelves (floating extensions of land ice).  

• Along ice shelf front: open-ocean BC (Neumann). 
• Along ice shelf base: zero traction BC (Neumann). 
 
 

⇒ For vertical grid lines that lie within ice shelves, top and 
bottom BCs resemble Neumann BCs so sub-matrix 
associated with one of these lines is almost* singular.  

⇒ Ice shelves give rise to severe ill-
conditioning of linear systems! *Completely singular in the presence 

of islands and some ice tongues. 
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Weak Scaling Study for a Fine-Resolution 
AIS Problem (cont’d) 

ILU AMG 

16 
cores  

1024 
cores  

16 
cores  

1024 
cores  

ILU vs. AMG: 
 

• ILU solver > 10× slower than AMG solver on 1024 core problem.  
• Due to extremely poor convergence of ILU solver (~700 iterations/solve) → 

resulting from ill-conditioning of underlying linear systems. 
• AMG iterations do grow as problem refined (14.4 iterations/solve on 16 cores vs. 

35.5 iterations/solve on 1024 cores), but it is better suited to linear systems 
associated with AIS. 
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Weak Scaling Study for a Fine-Resolution 
AIS Problem (cont’d) 

ILU AMG 

16 
cores  

1024 
cores  

16 
cores  

1024 
cores  

GMRES vs. CG: 
 

• GMRES solver found to be more effective than CG, even though problem is symmetric. 
 

• We believe GMRES is somewhat less sensitive to rounding errors associated with 
the severe ill-conditioning induced by the presence of ice shelves. 

• GMRES and CG minimize different norms. 
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Weak Scaling Study for a Fine-Resolution 
AIS Problem (cont’d) 

ILU AMG 

16 
cores  

1024 
cores  

16 
cores  

1024 
cores  

Summary: 
 

• Severe ill-conditioning caused by ice shelves! 
• GMRES less sensitive than CG to rounding errors from ill-

conditioning [also minimizes different norm]. 
• AMG preconditioner less sensitive than ILU to ill-conditioning. 

(vertical > horizontal 
coupling)  

+  
Neumann BCs  

=  
nearly singular 

submatrix associated 
with vertical lines 
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Summary and Ongoing Work 

Summary:  
 

• This talk described the development of a finite element land ice solver known as 
Albany/FELIX written using the libraries of the Trilinos libraries.  

 

• Strong and weak scaling studies on GIS and AIS problems revealed good overall 
scalability can be achieved by using a new AMG preconditioner based on aggressive 
semi-coarsening.  

Ongoing/future work: 
 

• Dynamic simulations of ice evolution using CISM-Albany and MPAS-Albany.  
 

• Deterministic and stochastic initialization runs. 
 

• Porting of code to new architecture supercomputers. 
 

• Journal article on AMG preconditioner in preparation for SISC (Tuminaro et. al, 2015) 
 
 

• Delivering code to climate community and coupling to earth system models. 

I. Tezaur, R. Tuminaro, M. Perego, A. Salinger, S. Price. "On the scalability of the Albany/FELIX 
first-order Stokes approximation ice sheet solver for large-scale simulations of the Greenland 

and Antarctic ice sheets", MSESM/ICCS, Reykjavik, Iceland (June 2015).  
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Appendix: Verification/Mesh 
Convergence Studies 

Stage 1: solution verification on 2D MMS 
problems we derived. 

Stage 2: code-to-code comparisons on canonical 
ice sheet problems. 

Stage 3: full 3D mesh convergence study on 
Greenland w.r.t. reference solution.  

Are the Greenland problems resolved?   
Is theoretical convergence rate achieved?  

Albany/FELIX LifeV 
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Appendix: Robustness of Newton’s Method 
via Homotopy Continuation (LOCA) 
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Appendix: Robustness of Newton’s Method 
via Homotopy Continuation (LOCA) 
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Appendix: Robustness of Newton’s Method 
via Homotopy Continuation (LOCA) 

γ=10-1.0 

γ=10-2.5 
γ=10-6.0 γ=10-10 

γ=10-10 
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• Newton’s method most robust with full step + homotopy continuation of 
𝛾 → 10−10: converges out-of-the-box!  
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